Jump to content

Search the Community

Showing results for tags 'gwo'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • General Weather Discussion
    • Forecasting and Discussion
    • 33andrain's Wx Research Portal
    • Ask the Experts!
    • Archived Storm Threads
  • Off Topic
  • Wx Retrospectives & Memories's Topic Directory
  • 45andbeyond's Political Discussion Topics
  • NY Yankees's Topic Directory
  • NY Mets's Mets Discussion Topics
  • NY Giants's Giants Discussion Topics
  • Post Memes / Animated GIFs's Memes / GIFs
  • NY Jets's Jets Discussion Topics
  • Movie & TV Lounge's TV/Movies Posts
  • Snap and Share - Weather and Outdoor Photography's Photos
  • Off Topic's General Discussion
  • The Foodie Network's Food Discussion Topics
  • General NFL Discussion's NFL Posts

Product Groups

  • Premium Services
  • Winter Essentials

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start



About Me


How did you find out about us?

Found 6 results

  1. Links Section In This Post, below the intro. I have been recently asked to start a thread, to talk about weather teleconnections and similar topics. This is often a topic not very well discussed on other weather places, and places like Twitter. We have a number of experts, enthusiasts, and meteorologists, who are knowledgeable in this area. So this is a thread for technical discussion about the teleconnections, etc, as well as a place for questions about these topics. We need to start talking about these climate drivers more, as they are the key to unlocking medium-long term forecasts. We are making a place for technical discussion about these factors away from the main thread/s. So this thread is born. Teleconnections that could be up for discussion are: MJO, AAM/GWO, NAO, RRWT, NP jet, Mountain & Frictional Torques, AO/AAO, ENSO, IOD, AMO, SSTs in general, SOI, QBO, the Stratosphere, etc. Feel free to talk about related topics, but stick to this general topic. I encourage all posters to discuss and pose questions relating to the topic, and keep it a relaxed atmosphere. Any questions, just PM me or comment here. Hope we can make this work Links Section ERSL Link, Up to 24 hours behind. GWO 90 day Victor Gensini Site. http://atlas.niu.edu/gwo/ Features Total AAM, Bias Corrected Rel AAM GEFS, CFS GWO Forecast. He stated he is soon to add torque products. Nick Schraldi GWO Site http://www.atmos.albany.edu/student/nschiral/gwo.html Non-Bias Corrected GEFS GWO forecast. Michael Ventrice http://mikeventrice.weebly.com/hovmollers.html Hovmoller from MV, to help spot AAM trends and patterns. GEFS. Carl Schreck https://ncics.org/portfolio/monitor/mjo/ More Hovmollers and other tropical charts to spot trends in the AAM. CFS forecast. NPJ Phase Diagrams/Albany http://www.atmos.albany.edu/facstaff/awinters/realtime/Deterministic_NPJPD.php Shows a GEFS forecast and observation of NP jetstream, which is largely controlled by the AAM. MJO Composites: http://www.atmos.albany.edu/facstaff/roundy/waves/rmmcyc/index200reg.html
  2. The Global Wind Oscillation and its Impact on Southwest Michghan Severe Storms Authors: William Marino Published: 2016 (exact date not shown) Presentation Summary: • What is the Global Wind Oscillation (GWO) • Relating the GWO to Southwest Michigan severe storm events. • Trends in Severe storm frequency over Southwest Lower Michigan Link to presentation (slides only): https://www.weather.gov/media/grr/GLOM2015/Presentations/Marino_GWOSevereStorms.pdf I'm trying to find the full presentation and will edit this entry if I locate it.
  3. What is the GSDM and how does it help with subseasonal weather forecasts? A YouTube Presentation Presentation By: Edward K Berry (Senior Weather-Climate Scientist) Presentation Event: American Meteorology Society - Student Chapter, College of DuPage, Chicago Presentation Date: 28th March, 2018 Summary: Leading meteorological scientists Ed Berry and Dr Klaus Weickmann jointly developed their GSDM (Global Synoptic Dynamic Model) while they were working at NOAA in the late 1990s and earlier years of this century. They also devised the GWO (Global Wind Oscillation) as a way of plotting and measuring the amounts of relative global AAM (Atmospheric Angular Momentum), frictional torque and mountain torque at different phases of the cycle. They became leaders in this specialist research which has been used to assist in understanding impacts on global weather patterns and upcoming changes up to a few weeks ahead. They left NOAA several years ago and Klaus Weickmann has retired. Ed Berry continues his excellent work on the GSDM and retains his lifelong passion to develop the model and its meteorological applications further. He recently gave a brilliant presentation about the model at an AMS meeting in Chicago. This is a one hour seminar with clear charts and explanations, ending with a question and answer session. I have watched it three times already and understand a little more about the GSDM from each viewing. For anyone wishing to learn more about AAM, the torques, the GWO and how they interact with other major teleconnections like phases of the ENSO (El Nino Southern Oscillation) and the MJO (Madden Julian Oscillation) then this is absolutely essential viewing. I also strongly recommend this for more advanced viewers as well. The presentation is right up-to-date and includes the 2018 SSW (Sudden Stratospheric Warming) event and links to key issues like climate change. Much of the presentation is slanted towards the North American climate and US weather patterns but it has a global significance and includes impacts on both hemispheres. Link to full presentation (1 hour and 4 minutes): https://youtu.be/Cv5CblXbYuQ I also reviewed this presentation on the main "Telconnections: A More technical Discussion" thread. This includes some examples of the charts used in the presentation. Just click on this direct link: What is the GSDM and how does it help with subseasonal weather forecasts? - A Review of This Presentation
  4. U.S. Hail Frequency and the Global Wind Oscillation Authors: Vittorio A. Gensini, John T. Allen Published: Jan 2018 Abstract: Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4–7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results. Plain Language Summary: Changes in patterns of wind across Earth have been demonstrated to impact the likelihood of weather patterns conducive to severe weather. This research shows that jet stream wind patterns that are wavy (meridional) are more likely to produce severe hailstorms. In addition, we demonstrate a framework that may be useful for the advanced prediction of damaging hailstones that are mostly likely to cause economic loss. Link to full paper: http://atlas.niu.edu/vgensini/files/pubs/Gensini and Allen 2018 GRL.pdf
  5. Tornado Frequency in the United States Related to Global Relative Angular Momentum Authors: Vittorio A. Gensini, Alan Marinaro Published: Feb 2016 Abstract: Global relative angular momentum and the first time derivative are used to explain nearly an order of magnitude of the variability in 1994–2013 U.S. boreal spring tornado occurrence. When plotted in a phase space, the global wind oscillation (GWO) is obtained. This global index accounts for changes in the global budget of angular momentum through interactions of tropical convection anomalies and extratropical dynamics including the engagement of surface torques. It is shown herein that tornadoes are more likely to occur in low angular momentum base states and less likely to occur in high angular momentum base states. When excluding weak GWO days, a maximum average of 3.9 (E)F1+ tornadoes per day were found during phase 1. This decreases to a minimum of 0.9 (E)F1+ tornadoes per day during phase 5. Composite environmental analysis suggests that increases/decreases in tornado occurrence are closely associated with anomalies in tropospheric ingredients necessary for tornadic storms. In addition, tornado frequency days exceeding the 90th percentile are shown to be favored when the global relative angular momentum budget and first time derivative are negative (GWO phases 1 and 2), as are significant tornado events [(E)F2+]. Implications for using GWO as a predictor for tornado forecasting are also discussed. Link to full paper: https://journals.ametsoc.org/doi/full/10.1175/MWR-D-15-0289.1
  6. The tropical Madden-Julian oscillation and the global wind oscillation Authors: Klaus Weickmann and Edward Berry First Published: June 12th , 2008 Abstract: The global wind oscillation (GWO) is a subseasonal phenomenon encompassing the Madden-Julian Oscillation (MJO) and mid-latitude processes like meridional momentum transports and mountain torques. A phase space is defined for the GWO following the approach of Wheeler and Hendon (2004) for the MJO. In contrast to the oscillatory behavior of the MJO, two red noise processes define the GWO. The red noise spectra have variance at periods that bracket the 30-60 day band generally used to define the MJO. The MJO and GWO correlation accounts for 25% of their variance and crossspectra show well-defined phase relations. However, considerable independent variance still exists in the GWO. During MJO and GWO episodes, key events in the circulation and tropical convection derived from composites can be used for monitoring and for evaluating prediction model forecasts, especially for weeks 1-3. A case study during April-May 2007 focuses on the GWO and two ~30 day duration orbits with extreme anomalies in GWO phase space. The MJO phase space projections for the same time were partially driven by mountain torques and meridional transports. The case reveals the tropical-extratropical character of subseasonal events and its role in creating slowly evolving planetary-scale circulation and tropical convection anomalies Link to Paper: https://www.esrl.noaa.gov/psd/map/clim/wb08_final.pdf
  • Create New...