Showing results for tags 'solar heating'. - 33andrain Jump to content

Search the Community

Showing results for tags 'solar heating'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • General Weather Discussion
    • US-Focused Forecast and Discussion
    • Global Forecast and Discussion
    • Historical Threads
  • Advanced Meteorology Discussion
    • Teleconnections, Atmosphere, Arctic, Climate Change
    • 33andrain's Wx Research Portal [World Exclusive]
    • Ask the Experts!
  • Off Topic
    • What's Up?
    • Sports

Product Groups

  • Premium Services
  • Winter Essentials

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start



About Me


How did you find out about us?

Found 2 results

  1. Why CO2 cools the middle atmosphere – a consolidating model perspective Authors: Helge F. Goessling and Sebastian Bathiany Published: 29th August, 2016 Abstract: Complex models of the atmosphere show that increased carbon dioxide (CO2) concentrations, while warming the surface and troposphere, lead to lower temperatures in the stratosphere and mesosphere. This cooling, which is often referred to as “stratospheric cooling”, is evident also in observations and considered to be one of the fingerprints of anthropogenic global warming. Although the responsible mechanisms have been identified, they have mostly been discussed heuristically, incompletely, or in combination with other effects such as ozone depletion, leaving the subject prone to misconceptions. Here we use a one-dimensional window-grey radiation model of the atmosphere to illustrate the physical essence of the mechanisms by which CO2 cools the stratosphere and mesosphere: (i) the blocking effect, associated with a cooling due to the fact that CO2 absorbs radiation at wavelengths where the atmosphere is already relatively opaque, and (ii) the indirect solar effect, associated with a cooling in places where an additional (solar) heating term is present (which on Earth is particularly the case in the upper parts of the ozone layer). By contrast, in the grey model without solar heating within the atmosphere, the cooling aloft is only a transient blocking phenomenon that is completely compensated as the surface attains its warmer equilibrium. Moreover, we quantify the relative contribution of these effects by simulating the response to an abrupt increase in CO2 (and chlorofluorocarbon) concentrations with an atmospheric general circulation model. We find that the two permanent effects contribute roughly equally to the CO2-induced cooling, with the indirect solar effect dominating around the stratopause and the blocking effect dominating otherwise. Link to full paper: Credit goes to Eric @Webberweather for finding this paper - thank you.
  2. Ocean Currents and Climate - An Information Guide Source: An educational paper produced by the Department of Earth Sciences, USC (University of Southern California) Published: no date (see below) Summary: There is no author and no date as this information guide was developed by the USC team and made available to the public on a free to view basis. There is also no abstract, so I shall briefly review the guide myself. In my view, this is an essential guide for all weather enthusiasts. It starts off by explaining the basics of understanding how the ocean currents operate. It covers solar heating, winds, gravity, the coriolis force, global circulation and surface features with simple definitions and annotated charts and diagrams. Then it goes to explain deeper currents, upwellings, the "Elkmann Transport" and the main ocean currents. Every term can be clicked on and a definition appears. These link to more advanced explanations and one can spend a long time browsing through each sub section. In my view, this is one of the best and easiest to understand "learning" papers that I've ever read. I recommend it to everyone. I show the link to the paper as well as another link to the USC site home page where you can find a wealth of of information and further guides and papers. In due course, I shall review more of these and bring them into this portal. Link to the full paper: Link to website:
  • Create New...